Structured

Matter

Light

Sensors

STRUCTURE MATTERS


NEWS

Recent events, selected break-throughs, twists, and more >>>

OUR RESEARCH

…in a Nutshell >>>

The primary mission of the Christian Doppler Laboratory for Structured Matter Based Sensing is centered on the fundamental study and development of patterned materials and surfaces as powerful and versatile platforms for applications in sensing as well as metrology. The spatial degrees of freedom of electromagnetic waves (light and millimeter waves) also play a pivotal role and serve as unique ‘knobs’ to unleash extra functionality and an unprecedented level of control.

MEET THE RESEARCH TEAMS

The People Behind the Research >>>

COMMERCIAL PARTNERS AND FUNDING

Learn more >>>

PUBLICATIONS

Browse Publications >>>

2025

  • Ch. Stockinger, N. G. Pruiti, I. Tribaldo, J. S. Eismann, M. Sorel, P. Banzer, Passive Silicon Nitride On-Chip Polarimetry: Precise Polarization Detection with Imperfect Components, arXiv preprint; https://doi.org/10.48550/arXiv.2512.03920
  • D. S. H. Brandmüller, D. Grafinger, R. Nuster, A. Hohenau, M. Ossiander, P. Banzer, Photoacoustic microscopy with meta-optics, Nat Commun Phys 8, 449; https://doi.org/10.1038/s42005-025-02350-4
  • U. Hohenester, F. Hitzelhammer, G. Krainer, P. Banzer, T. Juffmann, Optimizing the localization precision in coherent scattering microscopy using structured light, Nanophotonics; https://doi.org/10.1515/nanoph-2025-0435
  • V. Sharma, D. Brandmüller, J. Bütow, J. S. Eismann, P. Banzer, Universal photonic processor for spatial mode decomposition, Nat. Commun. 16, 7982 (2025); https://doi.org/10.1038/s41467-025-63359-5
  • Ch. Stockinger, J. S. Eismann, N. Pruiti, M. Sorel, P. Banzer, Passive silicon nitride integrated photonics for spatial intensity and phase sensing of visible light, Photon. Res. 13, 1699-1708 (2025); https://doi.org/10.1364/PRJ.553590n

2024

  • J. S. Eismann and P. Banzer, Nanoscale Vectorial Electric and Magnetic Field Measurement, ACS Photonics Article ASAP; https://doi.org/10.1021/acsphotonics.4c01831
  • Ch. Stockinger, J. S. Eismann, N. Pruiti, M. Sorel, P. Banzer, Passive silicon nitride integrated photonics for spatial intensity and phase sensing of visible light, arXiv:2412.14702
  • D. S. H. Brandmüller, D. Grafinger, R. Nuster, A. Hohenau, M. Ossiander, P. Banzer, Photoacoustic microscopy with meta-optics, arXiv:2412.11733
  • B. Kantor, L. Ackermann, V. Deinhart, K. Höflich, I. De Leon, P. Banzer, Individual Nanostructures in an Epsilon-Near-Zero Material Probed with 3D-Sculpted Light, Optics Express 32, 27, 47800-47809 (2024); https://doi.org/10.1364/OE.541939
  • Töfferl, M., Schossmann, A., Schmidt, C., Banzer, P., & Bergmann, A. (2024, November). Telemetric position sensing using resonant frequency parameterization of a millimeter-wave metamaterial. In Sensors and Communication Technologies in the 1 GHz to 10 THz Band (Vol. 13203, pp. 59-65). SPIE. https://doi.org/10.1117/12.3031513
  • Töfferl, M., Schossmann, A., Bergmann, A., & Banzer, P. (2024, September). Low cost 3D printable metamaterial for focused orbital angular momentum generation using mm-wave radar chip technology. In 2024 Eighteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials) (pp. 1-3). IEEE. https://doi.org/10.1109/Metamaterials62190.2024.10703276
  • Mousavi, S., Butt, M.A., Jafari, Z., Reshef, O., Boyd, R.W., Banzer, P., De Leon, I. (2024). Polarization-controlled unidirectional lattice plasmon modes via a multipolar plasmonic metasurface. Appl. Phys. Lett. 29, 124 (18), 181703. https://doi.org/10.1063/5.0195583.
  • Bütow, J., Eismann, J. S., Sharma, V., Brandmüller, D., & Banzer, P. (2024). Generating free-space structured light with programmable integrated photonics. Nature Photonics 18, 243–249. https://www.doi.org/10.1038/s41566-023-01354-2.

2023

  • Kantor, B., De Leon, I., Ackermann, L., & Banzer, P. (2023). Individual Nanostructures in an Epsilon-Near-Zero Material Probed with 3D-Sculpted Light. arXiv preprint arXiv:2311.15942.
  • Bütow, J., Sharma, V., Brandmüller, D., Eismann, J. S., & Banzer, P. (2023). Photonic integrated processor for structured light detection and distinction. Nature Communications Physics, 6(1), 369. https://doi.org/10.1038/s42005-023-01489-2.
  • Schossmann, A., Töfferl, M., & Bergmann, A. (2023). Millimeter wave metamaterial for high-order orbital angular momentum generation. In 2023 Seventeenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials) (pp. X-326). IEEE. https://doi.org/10.1109/Metamaterials58257.2023.10289178.
  • Bütow, J., Eismann, J. S., Sharma, V., Brandmüller, D., & Banzer, P. (2023). Generating free-space structured light with programmable integrated photonics. arXiv preprint arXiv:2304.08963.
  • Bütow, J., Sharma, V., Brandmüller, D., Eismann, J. S., & Banzer, P. (2023). Photonic integrated processor for structured light detection and distinction. arXiv preprint arXiv:2306.17449.
  • Schossmann A., Töfferl M., Schmidt C., Michenthaler C., Hammerschmidt D., Bergmann A. (2023). Telemetric angle and position sensing using millimeter-wave metamaterial and a FMCW chip. Congress SMSI Sensor and Measurement Science International. https://doi.org/10.5162/SMSI2023/P65.
  • Schossmann A., Töfferl M., Schmidt C., Michenthaler C., Hammerschmidt D., Bergmann A. (2023). Telemetric angle sensing using additively manufactured millimeter-wave metamaterial. Congress SMSI Sensor and Measurement Science International. https://doi.org/10.5162/SMSI2023/A4.4
  • Hinum-Wagner J. W., Scheibelhofer P., Hörmann S. M., Schmidt C., Feigl G., Kraft J., Bergmann A. (2023). CART-based optimization of core and cladding layers in silicon nitride photonic integrated circuits towards propagation and bend loss minimization. Emerging Applications in Silicon Photonics IV. https://doi.org/10.1117/12.3000805.
  • Hinum-Wagner J. W., Buchberger A., Schmidt C., Schörner C., Rist D., Hörmann S. M., Feigl G., Malicka I., Janka S., Kraft J., Bergmann A. (2023). Design optimization of silicon nitride-based micro-ring resonator systems in a CMOS mass production environment. Integrated Optics: Design, Devices, Systems, and Applications VII. https://doi.org/10.1117/12.2665322.