
Structured
Matter
Light
Sensors
Christian Doppler Laboratory for Structured Matter Based Sensing
STRUCTURE MATTERS

NEWS
Recent events, selected break-throughs, twists, and more >>>
- New Preprint…
- New Article “Photoacoustic microscopy with meta-optics” Published in Nature Communications Physics
- New Article “Universal photonic processor for spatial mode decomposition” Published in Nature Communications
- CONGRATULATIONS! Marko Simic receives the Visiting Award for High Potential.
- New Article “Passive silicon nitride integrated photonics for spatial intensity and phase sensing of visible light” published in Optica’s Photonics Research
- Happy Birthday, CDL-SMBS! 2 Years of Exciting Research.
- New Preprint…
- New Article “Nanoscale Vectorial Electric and Magnetic Field Measurement” published in ACS Photonics
- CDL-SMBS Post-doc Marko Simic Interviewed for BNN Quarterly
- New Preprint…
- New Article “Individual Nanostructures in an Epsilon-Near-Zero Material Probed with 3D-Sculpted Light” published in Optics Express
- Dorian Brandmüller invited to join the prestigious Walling Walls Summit 2024!
- CONGRATULATIONS! CDL-SMBS members win the Photonics & DeepTech Idea Challenge 2024
- Welcome on board! Michael Lamprecht joins the CDL-SMBS as a doctoral researcher.
- New Preprint…
- New Preprint…
- Successful Application! Next International Conference on Optical Angular Momentum Coming to Graz in 2026!
- Peter Banzer presents CDL research at ICOAM 2024 in South Africa
- Welcome on board! Marko Simic joins the CDL-SMBS as a postdoctoral researcher.
- Long Night of Research 2024 – Members of the CDL-SMBS and the OpNaQ group present three exciting optics and acoustics experiments to a fascinated public

OUR RESEARCH
…in a Nutshell >>>
The primary mission of the Christian Doppler Laboratory for Structured Matter Based Sensing is centered on the fundamental study and development of patterned materials and surfaces as powerful and versatile platforms for applications in sensing as well as metrology. The spatial degrees of freedom of electromagnetic waves (light and millimeter waves) also play a pivotal role and serve as unique ‘knobs’ to unleash extra functionality and an unprecedented level of control.


PUBLICATIONS
Browse Publications >>>
2025
- Ch. Stockinger, N. G. Pruiti, I. Tribaldo, J. S. Eismann, M. Sorel, P. Banzer, Passive Silicon Nitride On-Chip Polarimetry: Precise Polarization Detection with Imperfect Components, arXiv preprint; https://doi.org/10.48550/arXiv.2512.03920
- D. S. H. Brandmüller, D. Grafinger, R. Nuster, A. Hohenau, M. Ossiander, P. Banzer, Photoacoustic microscopy with meta-optics, Nat Commun Phys 8, 449; https://doi.org/10.1038/s42005-025-02350-4
- U. Hohenester, F. Hitzelhammer, G. Krainer, P. Banzer, T. Juffmann, Optimizing the localization precision in coherent scattering microscopy using structured light, Nanophotonics; https://doi.org/10.1515/nanoph-2025-0435
- V. Sharma, D. Brandmüller, J. Bütow, J. S. Eismann, P. Banzer, Universal photonic processor for spatial mode decomposition, Nat. Commun. 16, 7982 (2025); https://doi.org/10.1038/s41467-025-63359-5
- Ch. Stockinger, J. S. Eismann, N. Pruiti, M. Sorel, P. Banzer, Passive silicon nitride integrated photonics for spatial intensity and phase sensing of visible light, Photon. Res. 13, 1699-1708 (2025); https://doi.org/10.1364/PRJ.553590n
2024
- J. S. Eismann and P. Banzer, Nanoscale Vectorial Electric and Magnetic Field Measurement, ACS Photonics Article ASAP; https://doi.org/10.1021/acsphotonics.4c01831
- Ch. Stockinger, J. S. Eismann, N. Pruiti, M. Sorel, P. Banzer, Passive silicon nitride integrated photonics for spatial intensity and phase sensing of visible light, arXiv:2412.14702
- D. S. H. Brandmüller, D. Grafinger, R. Nuster, A. Hohenau, M. Ossiander, P. Banzer, Photoacoustic microscopy with meta-optics, arXiv:2412.11733
- B. Kantor, L. Ackermann, V. Deinhart, K. Höflich, I. De Leon, P. Banzer, Individual Nanostructures in an Epsilon-Near-Zero Material Probed with 3D-Sculpted Light, Optics Express 32, 27, 47800-47809 (2024); https://doi.org/10.1364/OE.541939
- Töfferl, M., Schossmann, A., Schmidt, C., Banzer, P., & Bergmann, A. (2024, November). Telemetric position sensing using resonant frequency parameterization of a millimeter-wave metamaterial. In Sensors and Communication Technologies in the 1 GHz to 10 THz Band (Vol. 13203, pp. 59-65). SPIE. https://doi.org/10.1117/12.3031513
- Töfferl, M., Schossmann, A., Bergmann, A., & Banzer, P. (2024, September). Low cost 3D printable metamaterial for focused orbital angular momentum generation using mm-wave radar chip technology. In 2024 Eighteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials) (pp. 1-3). IEEE. https://doi.org/10.1109/Metamaterials62190.2024.10703276
- Mousavi, S., Butt, M.A., Jafari, Z., Reshef, O., Boyd, R.W., Banzer, P., De Leon, I. (2024). Polarization-controlled unidirectional lattice plasmon modes via a multipolar plasmonic metasurface. Appl. Phys. Lett. 29, 124 (18), 181703. https://doi.org/10.1063/5.0195583.
- Bütow, J., Eismann, J. S., Sharma, V., Brandmüller, D., & Banzer, P. (2024). Generating free-space structured light with programmable integrated photonics. Nature Photonics 18, 243–249. https://www.doi.org/10.1038/s41566-023-01354-2.
2023
- Kantor, B., De Leon, I., Ackermann, L., & Banzer, P. (2023). Individual Nanostructures in an Epsilon-Near-Zero Material Probed with 3D-Sculpted Light. arXiv preprint arXiv:2311.15942.
- Bütow, J., Sharma, V., Brandmüller, D., Eismann, J. S., & Banzer, P. (2023). Photonic integrated processor for structured light detection and distinction. Nature Communications Physics, 6(1), 369. https://doi.org/10.1038/s42005-023-01489-2.
- Schossmann, A., Töfferl, M., & Bergmann, A. (2023). Millimeter wave metamaterial for high-order orbital angular momentum generation. In 2023 Seventeenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials) (pp. X-326). IEEE. https://doi.org/10.1109/Metamaterials58257.2023.10289178.
- Bütow, J., Eismann, J. S., Sharma, V., Brandmüller, D., & Banzer, P. (2023). Generating free-space structured light with programmable integrated photonics. arXiv preprint arXiv:2304.08963.
- Bütow, J., Sharma, V., Brandmüller, D., Eismann, J. S., & Banzer, P. (2023). Photonic integrated processor for structured light detection and distinction. arXiv preprint arXiv:2306.17449.
- Schossmann A., Töfferl M., Schmidt C., Michenthaler C., Hammerschmidt D., Bergmann A. (2023). Telemetric angle and position sensing using millimeter-wave metamaterial and a FMCW chip. Congress SMSI Sensor and Measurement Science International. https://doi.org/10.5162/SMSI2023/P65.
- Schossmann A., Töfferl M., Schmidt C., Michenthaler C., Hammerschmidt D., Bergmann A. (2023). Telemetric angle sensing using additively manufactured millimeter-wave metamaterial. Congress SMSI Sensor and Measurement Science International. https://doi.org/10.5162/SMSI2023/A4.4
- Hinum-Wagner J. W., Scheibelhofer P., Hörmann S. M., Schmidt C., Feigl G., Kraft J., Bergmann A. (2023). CART-based optimization of core and cladding layers in silicon nitride photonic integrated circuits towards propagation and bend loss minimization. Emerging Applications in Silicon Photonics IV. https://doi.org/10.1117/12.3000805.
- Hinum-Wagner J. W., Buchberger A., Schmidt C., Schörner C., Rist D., Hörmann S. M., Feigl G., Malicka I., Janka S., Kraft J., Bergmann A. (2023). Design optimization of silicon nitride-based micro-ring resonator systems in a CMOS mass production environment. Integrated Optics: Design, Devices, Systems, and Applications VII. https://doi.org/10.1117/12.2665322.









